(3/v-5)+(4/v^2-25)=(1/v+5)

Simple and best practice solution for (3/v-5)+(4/v^2-25)=(1/v+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/v-5)+(4/v^2-25)=(1/v+5) equation:


D( v )

v = 0

v^2 = 0

v = 0

v = 0

v^2 = 0

v^2 = 0

1*v^2 = 0 // : 1

v^2 = 0

v = 0

v in (-oo:0) U (0:+oo)

3/v+4/(v^2)-25-5 = 1/v+5 // - 1/v+5

3/v-(1/v)+4/(v^2)-25-5-5 = 0

3/v-v^-1+4/(v^2)-25-5-5 = 0

2*v^-1+4*v^-2-35 = 0

t_1 = v^-1

4*t_1^2+2*t_1^1-35 = 0

4*t_1^2+2*t_1-35 = 0

DELTA = 2^2-(-35*4*4)

DELTA = 564

DELTA > 0

t_1 = (564^(1/2)-2)/(2*4) or t_1 = (-564^(1/2)-2)/(2*4)

t_1 = (2*141^(1/2)-2)/8 or t_1 = (-2*141^(1/2)-2)/8

t_1 = (-2*141^(1/2)-2)/8

v^-1-((-2*141^(1/2)-2)/8) = 0

1*v^-1 = (-2*141^(1/2)-2)/8 // : 1

v^-1 = (-2*141^(1/2)-2)/8

-1 < 0

1/(v^1) = (-2*141^(1/2)-2)/8 // * v^1

1 = ((-2*141^(1/2)-2)/8)*v^1 // : (-2*141^(1/2)-2)/8

8*(-2*141^(1/2)-2)^-1 = v^1

v = 8*(-2*141^(1/2)-2)^-1

t_1 = (2*141^(1/2)-2)/8

v^-1-((2*141^(1/2)-2)/8) = 0

1*v^-1 = (2*141^(1/2)-2)/8 // : 1

v^-1 = (2*141^(1/2)-2)/8

-1 < 0

1/(v^1) = (2*141^(1/2)-2)/8 // * v^1

1 = ((2*141^(1/2)-2)/8)*v^1 // : (2*141^(1/2)-2)/8

8*(2*141^(1/2)-2)^-1 = v^1

v = 8*(2*141^(1/2)-2)^-1

v in { 8*(-2*141^(1/2)-2)^-1, 8*(2*141^(1/2)-2)^-1 }

See similar equations:

| 2-3x=5x | | (2)/(25z^3)+(1)/(10z^2) | | 6u^2+13u+16= | | 10x-4=8x-ray | | 25+x=175 | | 180=3y+6 | | x/(5x+18)=(-3/x) | | x^3-x^2+21x+45=0 | | 3*a+6*(a+5)-525=0 | | 5(2x+1)-6x+1=-6 | | 7x=-10 | | 3xa+6x(a+5)-525=0 | | 0.6y=3y-4 | | 21x-12=156 | | 13/11=y/12 | | X-7=8x+56 | | 19x+57=152 | | 6n-4=28 | | (1-w)(5+4w)=0 | | 7x-4=8x+3 | | 38=3+2L+2w | | 11x-4y=11 | | 75-1/3= | | 75-1/3-4/5= | | 6a^2-ax-15x^2=0 | | P=2x^2+18x+320 | | P=2x^2+18+320 | | 175000=x(18000)+123096 | | 2x=4x+22 | | Ab-d=cforb | | f(0)=5(0)-2 | | f(3)=5(3)-2 |

Equations solver categories